SURV699Q/SURVMETH 895
Prediction Theory

Place:
JPSM
Lefrak Hall University
of Maryland College
Park MD

MPSM
University of Michigan
Ann Arbor MI

Webpage
https://ctools.umich.edu/portal
Class notes and datasets will be posted here.
Print the notes each week before coming to class.
See the last page of this syllabus for instructions on how to establish a “Friend” account at UMich that will allow you to use Ctools.

Office Hours by appointment
Your questions will usually be most quickly answered by email.

Teaching assistant: none

Homework
Answers can be emailed, faxed to JPSM (301-314-7912), or paper copies put in my JPSM mailbox.

Assessment:
Homework Assignments (70%)
Homework is due (typically) 1 week after it is assigned.
Simulation project (20%), due on Dec. 15
Class participation (10%)
Simulation project
The simulation project will be designed to illustrate the properties of some estimators covered in the class. You will have some discretion in what you include but the final content will be approved by the instructor. The simulations will be written in the R language, which you will learn during the course of the semester. Your project and results will be described in a brief (15-20 pages) technical report. The R code should be included in an appendix (that does not count as part of the 15-20 pages).

Due dates:
- Description of your proposed project, Nov. 17
- Feedback from instructor, Nov. 23
- Final report, Dec. 15

Course Topics: Text Book

Most but probably not all of these topics will be covered. There will likely be some substitutions during the semester based on current interests of the instructor.

1. Introduction to Prediction Theory
 - Sampling Theory and the Rest of Statistics
 - Prediction Theory
 - Which Approach to Use—Prediction or Probability Sampling?
 - Why Use Random Sampling?

2. Prediction Theory under the General Linear Model
 - General Prediction Theorem
 - The BLU Predictor under Some Simple Models
 - Asymptotic Normality of the BLU Predictor
 - Ignorable and Non-ignorable Sample Selection Methods
 - Comparisons with Design-based Regression Estimation

3. Bias-Robustness
 - Design and Bias
 - Simple Polynomial Framework and Balanced Samples
 - Expansion and Ratio Estimators and Balanced Samples
 - Bias-Robust Strategies
 - Weighted Balance
 - BLU Estimators Unbiased under Weighted Balance
 - Methods of Selecting Balanced Samples
 - Simulation Study of Weighted Balance
 - Robustness and Design Based Inference

4. Robustness and Efficiency
 - General Linear Model
 - BLU Predictor under the General Linear Model with Diagonal Variance Matrix
 - Results for Probability Proportional to x Sampling and x-balance
Results for Probability Proportional to $x^{1/2}$ Sampling and $x^{1/2}$ -balance
Results for Equal Probability Systematic Sampling and Simple Balance
Sample Size Determination

5. **Variance Estimation**
 - Homoscedastic Through the Origin Model
 - Variance Estimators for the Ratio Estimator
 - Variance Estimation of a Linear Function of the Parameter
 - The “Sandwich” Variance Estimator
 - Adjustments to the Sandwich Estimator
 - Jackknife Variance Estimator
 - Variance Estimation for Totals
 - Misspecification of the Regression Component
 - Comparisons with Design-based Variance Estimation

6. **Stratified Populations**
 - Stratification with Homogeneous Subpopulations
 - Stratified Linear Model and Weighted Balanced Samples
 - Optimal Allocation for Stratified Balanced Sampling
 - Allocation to Strata in More Complicated Cases
 - Contrasts between Strata
 - More than One Target Variable
 - Some Empirical Results on Strata Formation
 - Variance Estimation in Stratified Populations
 - Stratification in Design-based Theory

7. **Models with Qualitative Auxiliaries**
 - Factors, Levels, and Effects
 - Generalized Inverses
 - Estimating Linear Combinations of the Y’s
 - One-way Classification
 - Two-way Nested Classification
 - Two-way Classification without Interaction
 - Two-way Classification with Interaction

8. **Two-stage Sampling for Clustered Populations**
 - An Intracluster Correlation Model for a Clustered Population
 - A Variance Component Model
 - Estimation of Model Parameters
 - ANOVA Estimators
 - Maximum Likelihood Estimators
 - General Class of Estimators When There is a Common Mean
 - Two Alternative Estimators of the Total
 - Optimal Allocation of Second-stage units given a Fixed Set of First-stage Sample Units
 - Optimal First and Second Stage Allocation Considering Costs
 - Estimation under a More General Regression Model
Estimation under a Post-stratification Model

9. Robust Variance Estimation in Two-Stage Sampling
 The Working Model and a General Class of Estimators
 Variance Estimation for an Estimated Total—Known Cluster Sizes
 A Non-Robust ANOVA Estimator
 Robust Variance Estimator for the General Class of Estimators
 Variance Estimation for an Estimated Total—Unknown Cluster Sizes
 Variance Estimation for a Ratio of Estimated Totals
 Variance Estimation for the Post-stratified Estimator

10. Alternative Variance Estimation and Confidence Interval Construction Strategies
 Jackknife
 unstratified and stratified cases
 Miller residual formula
 consistency
 application to ratio and regression estimators
 multistage sampling

11. Special Topics
 Distribution Function and Quantile Estimation
 Estimation of \(F_N(\cdot) \)
 Estimation in the Presence of Outliers
 Nonparametric Estimation of Totals

Course Topics: R programming

Programming in R will be interspersed throughout the course. There will be several class meetings devoted almost entirely to use of R. Topics will include:

- Workspaces
- Objects
 Vectors, matrices, lists, data frames, attributes
- Importing/exporting data
- Scripts
 - Editing scripts with Tinn-R
- Commands
- Writing functions
 - Debugging using browser
- Writing simulation programs
- Packages
 - foreign, ggplot2, MASS, rpart, survey, among others
Datasets

The course will use (at least) six datasets:
cancer
co60
co70
grade3
hospital
labor

These are described in Appendix B of the text. They can be downloaded from the class website.
How to Set Up a Friend Account for Guest Access to U of M Computing Resources

How to Set Up a Friend Account

You will need to have an e-mail address that does not end in “umich.edu” in order to set up a Friend account.

1. Use your web browser to go to this URL: https://weblogin.umich.edu/friend/
2. Enter the full e-mail address of the person who will use the Friend account in the box, and click the Request button.
3. You will see confirmation that your Friend request has been submitted.
4. A message with further instructions will be sent to the e-mail address that you entered. Click the Create Friend Account link in the message to go to the web page where you can continue creating your Friend account. (Depending on which e-mail program you use, the message may be formatted differently.)
5. Select a password and enter it in the Password box. Retype the password in the Confirm Password box to confirm your selection. Then click the Set Password button.
6. You will see a confirmation screen letting you know that your Friend account has been created.
7. You will receive an e-mail message confirming the creation of your Friend account and providing you with information about it. We recommend that you save this message for reference.

Using Your Friend Account

You can use your Friend account login name and password to log in to U of M web-based computing resources at this URL: https://weblogin.umich.edu/

Your login name is your full e-mail address, the one you used when creating your Friend account. After you log in, you will see a list of services. Click any service link to open that service.

Note that you can only use services that you have been authorized to use. If you want to use a service that you have not yet been authorized to use, contact the service provider and ask for authorization.

*For more information about setting up a Friends account:
http://www.itd.umich.edu/itcsdocs/all.php (click on S4316)

To Access C tools

Access Ctools at the following link: https://ctools.umich.edu/portal, use the account you established following the instructions above to log in to Ctools